大数据 (big data)IT行业术语
栏目:相关知识 发布时间:2020-07-27
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶

大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

大数据

中文名:大数据

外文名:big data,mega data

提出者:维克托·迈尔-舍恩伯格及肯尼斯·库克耶

提出时间:2008年8月中旬

应用学科:计算机,信息科学,统计学

适用领域范围:BI,工业4.0,云计算,物联网,互联网+

适用领域范围:人工智能

5V特点:大量、高速、多样、价值、真实性


想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。


大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

它们按照进率1024(2的十次方)来计算:

1 Byte =8 bit

1 KB = 1,024 Bytes = 8192 bit

1 MB = 1,024 KB = 1,048,576 Bytes

1 GB = 1,024 MB = 1,048,576 KB

1 TB = 1,024 GB = 1,048,576 MB

1 PB = 1,024 TB = 1,048,576 GB

1 EB = 1,024 PB = 1,048,576 TB

1 ZB = 1,024 EB = 1,048,576 PB

1 YB = 1,024 ZB = 1,048,576 EB

1 BB = 1,024 YB = 1,048,576 ZB

1 NB = 1,024 BB = 1,048,576 YB

1 DB = 1,024 NB = 1,048,576 BB

全称:

1 Bit(比特) =Binary Digit

8 Bits = 1 Byte(字节)

1,000 Bytes = 1 Kilobyte

1,000 Kilobytes = 1 Megabyte

1,000 Megabytes = 1 Gigabyte

1,000 Gigabytes = 1Terabyte

1,000 Terabytes = 1 Petabyte

1,000 Petabytes = 1 Exabyte

1,000Exabytes = 1 Zettabyte

1,000 Zettabytes = 1 Yottabyte

1,000 Yottabytes = 1Brontobyte

1,000 Brontobytes = 1 Geopbyte


特征:

容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

种类(Variety):数据类型的多样性;

速度(Velocity):指获得数据的速度;

可变性(Variability):妨碍了处理和有效地管理数据的过程。

真实性(Veracity):数据的质量。 

复杂性(Complexity):数据量巨大,来源多渠道。

价值(value):合理运用大数据,以低成本创造高价值。


大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。